

Tetrahedron Letters, Vol. 35, No. 44, pp. 8113-8116, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7,00+0.00

0040-4039(94)01766-2

An ab Initio Study of the Reactivity of Nitrosoketene with Formaldehyde

Sihyun Ham and David M. Birney*

Department of Chemistry and Biochemistry Texas Tech University, Lubbock, Texas 79409-1061

Abstract: Ab initio molecular orbital theory (RHF/6-31G^{*}) was used to locate pseudopericyclic transition structures for the cycloaddition of formaldehyde to the Z and E conformations of nitrosoketene. The [3+2] pathway, with a calculated activation energy of only 3.5 kcal/mol, is predicted to be significantly favored over the [4+2] alternative.

Katagiri *et al.*¹ have recently proposed that nitrosoketene (3) is an intermediate in the thermolysis of hydroxyimino Meldrum's acid (1) and synthesized a series of cyclic nitrones (e.g. **2b**) by trapping 3 with ketones, as shown in equation 1. They considered two reactions pathways (scheme 1), a [4+2] cycloaddition followed by a 1,2-migration or a direct [3+2] cycloaddition, although they favored the former. We recognized both cycloadditions as orbital symmetry allowed, pseudopericyclic reactions² and were intrigued as to which of these competing reactions might prevail. We report here the results of *ab initio* calculations which indicate that E-nitrosoketene (*E*-3) undergoes a [3+2] reaction with formaldehyde (a model carbonyl compound) to form the cyclic nitrone **2a** via a five-membered transition structure (TS) **5** rather than the alternative [4+2] cycloaddition via TS **4**.

Structures of 2a, Z-3, E-3, 4, 5, and 6 were fully optimized at the RHF level of theory with the 3-21G and 6-31G* basis sets and were characterized by vibrational frequency calculations.³ The two different conformations of the nitrosoketene, viz. Z-3 and E-3, were both calculated to be planar. Single point energies were calculated at the MP4(SDQ)/6-31G* (frozen core) level at the RHF/6-31G* optimized geometries and scaled (0.9) zero point energy (ZPE) corrections (RHF/6-31G*) were made.^{4,5} Absolute energies are reported in Table 1 and relative energies in Table 2. At the RHF/6-31G* level, E-3 is 1.7 kcal/mol more stable than Z-3, but at both the MP2/6-31G* and MP4(SDQ)/6-31G* + ZPE levels, the preference for E-3 was only 1.0 kcal/mol. It has previously been suggested that a balance between electrostatic and steric effects determine the conformational preferences of substituted α -oxoketenes.⁴ The large energy preference found for E-3 would imply that the electrostatic attraction between the non-bonding electrons on the nitrogen (which nonetheless

bears a net positive charge) and the partially positive central carbon (C₂) in the ketene is stronger than the electrostatic attraction between this carbon and the partially negative nitrosyl oxygen O_5 in Z-3.

Concerted transition structures were located for the [4+2] cycloaddition of formaldehyde to **Z-3** (4) and for the [3+2] cycloaddition to **E-4** (5) (Figure 1). The geometry of 4 is very similar to that found for the addition of formaldehyde to acetylketene.^{2b,6} The forming C₂O₇ bond in 4 is 0.154 Å shorter than the O₅C₈ bond, and the formaldehyde is twisted slightly out of plane. This indicates that the nucleophilic addition of an O₇ lone pair to C₂ leads the reaction, and nucleophilic addition of an O₅ lone pair to the π^* of formaldehyde follows. There is greater asynchronicity in 4 than in the reaction of acetylketene^{2b} because of the electronegative nitrogen (N₄) which decreases the nucleophilicity of the attached oxygen (O₅), thus reducing O₅C₈ bond formation in 4.

In contrast, transition structure 5 is planar and the N₄C₈ distance is 0.039 Å shorter than the C₂O₇ distance. Since the N₄C₈ bond (1.470 Å) in 2a is longer than the C₂O₇ bond (1.353 Å), it is clear that N₄ bonding to C₈ is more significant in the transition structure than C₂O₇ bonding. In this case the in-plane lone pair on N₄ of *E*-3 leads the reaction, adding as a nucleophile at C₈ to the π^* of the formaldehyde. As electron density accumulates in the π system of the formaldehyde, it adds as a nucleophile to C₂ of the ketene. The planar transition structure requires that the nucleophilic and electrophilic sites on formaldehyde are coplanar.

The calculated activation energy for forming 2a via 5 is only 3.5 kcal/mol, which is significantly lower than 8.8 kcal/mol to form 6 via 4. Three factors contribute to this low barrier. First, the planarity of the TS allows for maximum orbital overlap, in contrast to the non-planar TSs of most pericyclic reactions which result from compromises in the overlap between breaking and forming bonds.⁷ Secondly, the lack of a closed loop of interacting orbitals at the pseudopericyclic TS avoids the electron-electron repulsion^{2b} inherent in most pericyclic reactions⁸ and also means that the number of electrons is irrelevant. Thirdly, the nitrogen at N₄ (5), being a better nucleophile than O₅ (4), reacts more readily as well.

Figure 1. Fully optimized geometries of the transition structures 4 and 5 at the RHF/6-31G* level.

Table 1. Absolute energies (Hartree) of structures optimized at the RHF/6-31G* level.

Structure	RHF/6-31G* ^a	ZPE ^b	MP2/6-31G* ^c	MP4(SDQ) ^c + ZPE ^d
Z-3	-280.36197	20.9	-281.11527	-253.01745
CH ₂ O	-113.86633	20.3	-114.17496	-102.76344
4	-394.20137	41.8	-395.27713	-355.76855
6	-394.31018	46.8	-395.36675	-355.85533
E-3	-280.36469	20.9	-281.11685	-253.01911
5	-394.20980	42.2	-395.28946	-355.77698
2a	-394.29655	46.6	-395.37156	-355.85183

^a At the RHF/6-31G* optimized geometry. ^b Zero-point vibrational energy in kcal/mol. ^c Calculated using the frozen core approximation.^d Zero-point vibrational energy correction from RHF/6-31G* frequencies and scaled by 0.9.

Structure	RHF/6-31G*	MP2/6-31G* ^a	MP4(SDQ) ^a + ZPE ^b
$E-3 + CH_2O$	0.0	0.0	0.0
$4 (TS)^{-}$	18.6	9.2	8.8
6	-49.7	-47.0	-45.7
5 (TS)	13.3	1.5	3.5
2a í	-41.1	-50.0	-43.5

Table 2. Relative energies (kcal/mol) of structures optimized at the RHF/6-31G* level.

^a Calculated using the frozen core approximation at the RHF/6-31G* geometry. ^b Zero-point vibrational energy correlation from RHF/6-31G* frequencies and scaled by 0.9.

A search for a TS related to the postulated 1,2-migration which would connect 6 to 2a was attempted. Beginning with the optimized structure 2a, the N₄C₈ bond was lengthened and the rest of the geometry was optimized. However, this optimization moved O₅ away from the ring instead of making the six membered ring. A similar search with the angle O₅-N₄-C₈ constrained also failed to locate a transition structure for the 1,2-migration. These results suggest that the observed ring contraction of 5,6-dihydro-1,2-oxazin-4-ones to 4,5-dihydropyrrol-3-one-1-oxides⁹ may occur via a fragmentation/recombination pathway. In conclusion, the lower barrier for the [3+2] cycloaddition and the absence of a transition structure for the 1,2-migration suggest that the formation of cyclic nitrones such as **2a** occurs directly via the [3+2] reaction mechanism.

Acknowledgment. This research was supported in part by a grant from the Robert A. Welch Foundation.

References and Notes

- 1. Katagiri, N.; Kurimoto, A.; Yamada, A.; Sato, H.; Katsuhara, T.; Takagi, K.; Kaneko, C. J. Chem. Soc., Chem. Commun. 1994, 281-282.
- (a) Ross, J. A.; Seiders, R. P.; Lemal, D. M. J. Am. Chem. Soc. 1976, 98, 4325-4327. (b) Birney, D. M.; Wagenseller, P. E. J. Am. Chem. Soc. 1994, 116, 6262-6270.
- (a) Gaussian 92. Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian, Inc.: Pittsburgh PA, 1992. (b) Optimized geometries are available upon request from the authors. (c) The RHF/6-31G* optimized geometries and energies of Z-3 and E-3 have previously been reported (Gong, L.; McAllister, M. A.; Tidwell, T. T. J. Am. Chem. Soc. 1991, 113, 6021-6028) but frequency calculations (ZPE) and single point energies were not reported.
- 4. Birney, D. M. J. Org. Chem., 1994, 59, 2557-2564.
- 5. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley and Sons, Inc.: New York, 1986.
- (a) Clemens, R. J.; Witzeman, J. S. J. Am. Chem. Soc. 1989, 111, 2186-2193. (b) Freiermuth, B.; Wentrup, C. J. Org. Chem. 1991, 56, 2286-2289.
- 7. Houk, K. N.; Li, Y.; Evanseck, J. D. Angew. Chem., Int. Ed. Engl. 1992, 31, 682-708.
- (a) Houk, K. N.; Gandour, R. W.; Strozier, R. W.; Rondan, N. G.; Paquette, L. A. J. Am. Chem. Soc. 1979, 101, 6797-6802. (b) Bach, R. D.; Wolber, G. J.; Schlegel, H. B. J. Am. Chem. Soc. 1985, 107, 2837-2841. (c) Ioffe, A.; Shaik, S. J. Chem. Soc., Perkin Trans. 2 1992, 2101-2108.
- 9. Deshayers, C.; Gelin, S. Tetrahedron Lett. 1988, 22, 2557.

(Received in USA 22 July 1994; revised 31 August 1994; accepted 1 September 1994)